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The slowly charging capacitor is the standard example used to illustrate that the displacement

current density is needed in Ampere’s law if we want to correctly determine the magnetic field

between capacitor plates. However, in any quasi-static situation the magnetic field can also be

determined using the Biot-Savart law including only the real current densities. In this work, we

will numerically calculate the magnetic field due to the surface currents on the capacitor plates and

add it to the magnetic field due to the charging wire and show how they combine to create the

correct magnetic field thoughout all space. For regions to the left or right of the capacitor, we find

the surprising result that the surface currents replicate the magnetic field that would have been

created by the missing section of the charging wire between the plates. For points between the

capacitor plates, the magnetic field due to the surface currents mostly cancels the magnetic field

from the near-infinite length charging wire, resulting in the well-known reduced field in that

interior region. We will also illustrate the impact of finite capacitor plates on these results and

briefly comment on how textbook and/or classroom discussions could be improved by carefully

discussing these details. VC 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0000635

I. INTRODUCTION

The slowly charging capacitor is the standard example
used in introductory1–3 and advanced4–7 textbooks to illus-
trate that the integral form of Ampere’s law,þ

~B � ~ds ¼ l0

ð
S

ð~J þ ~JDÞ � d~A; (1)

is incomplete without the displacement current density ~JD

(where ~JD ¼ ð@~D=@tÞ and ~D is the electric displacement
field). To aid our discussion of the standard textbook analy-
sis, refer to Fig. 1. Imagine that we are trying to determine
the magnetic field intensity at point P. In these solutions, we
assume that the capacitor plates are infinitely large so the
electric field between the plates is uniform and there is no
fringing field. From a practical standpoint, the plates are
“effectively infinitely large” if the plate radius is large com-
pared to the plate separation (a� d) and if the field point is
both sufficiently close to the plates (jzj � a) and sufficiently
far from their edges. Given the symmetry here, we will use a
circular Amperian loop containing point P which is concen-
tric with the current I. That specifies the left side of Eq. (1)
but there are an infinite number of choices for the right side
since the surface just has to be bounded by the loop. Let’s
first use the circular area inside the Amperian loop (labeled
S1 in Fig. 1). The current I passes through S1 and we obtain

~BP ¼
l0I

2pq
/̂; (2)

where /̂ is the standard cylindrical coordinate unit vector.
However, we could also use S2 which is an ellipsoidal-
shaped structure with a circular hole on its right side which
encloses the right capacitor plate. The current I doesn’t pass
through S2, and so we would conclude that there is no mag-
netic field. Since ~BP can’t depend upon our choice of surface
and since we can easily measure the (non-zero) magnetic
field, something must be wrong. At this point in the standard
analysis, the displacement current density is introduced and

then Eq. (1) with S2 also results in Eq. (2). Unfortunately,
this gives students the impression that real currents are the
source of ~B for S1 while displacement currents are the source
for S2

8 and this is certainly misleading.
One important question is never asked during this analy-

sis: “Is the magnetic field at point Q (in Fig. 1) any different
from the magnetic field at point P? Why or why not?”
Equation (1) makes it clear that the exact same field exists at
point Q. However, this result is very unexpected since there
is no translational invariance here. There must be something
deeper involved. In this work (see Sec. IV), we will

Fig. 1. This illustrates the system geometry. The two capacitor plates (dark

blue online) have a radius a and a separation d. The upper and lower halves

of each plate are labeled separately (I-IV). Paths 1 and 2 (magenta online)

are the locus of points along which we will determine the magnetic field in

Secs. IV and V. Three field points (P, Q and R, sky blue online) are shown

along these paths. A circular Amperian loop (medium dashed line) passes

through point P and it is the bounding contour for two surfaces. S1 (darker

shading) is the perfect circular area inside that contour and S2 (lighter shad-

ing) is an ellipsoidal-shaped structure, with a circular hole on its right side,

which encloses the right capacitor plate. We use a standard cylindrical coor-

dinate system (q;/; z). The current I (red online) lies on the z axis and z¼ 0

on the right capacitor plate. The charging wire is assumed to be an infinitely

long point current and the capacitor plates (while appearing somewhat three-

dimensional here) are two-dimensional.
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determine how the magnetic fields at points P and Q are
identical and how both match the infinite straight current
field.

Let’s now imagine that we want to find the magnetic field
at point R in Fig. 1. In the standard textbook solution, we
apply Eq. (1) to a circular Amperian loop which contains
point R and use a circular area analogous to S1. This surface
is only pierced by displacement current and we find that

~BR ¼

l0Iq
2pa2

/̂ 0 � q � a;

l0I

2pq
/̂ q � a:

8>>><
>>>:

(3)

Thus, the magnetic field increases linearly with radius inside
the capacitor and then matches an infinite straight current
field outside the capacitor. In Sec. V, we will determine (in
detail) why the field has the structure given in Eq. (3). In
1985, Bartlett and Corle9 performed a challenging measure-
ment of this linear increase and more recently Scheler and
Paulus10 described an experiment that could demonstrate this
in the classroom. Unfortunately, this calculation gives stu-
dents the impression that the magnetic field between the
plates can only be calculated using the displacement current.
In fact, other authors have calculated ~B using different
Amperian loops which have “different sources.”11,12

II. WHAT ARE THE SOURCES OF THE MAGNETIC

FIELD?

For this slowly charging capacitor, it is the current in the
charging wire and the surface currents on the capacitor plates
which are the sources of the magnetic field. The displace-
ment current doesn’t contribute. For quasi-static situations
with no induced electric fields we know that ~r � ~E ¼ 0. In
this situation, in addition to using Ampere’s law to determine
the magnetic field (Eq. (1)), one can also use the Biot-Savart
law,

~Bð~rÞ ¼ l0

4p

ð
V

~Jð~r0 Þ � ð~r �~r0 Þds0

j~r �~r0 j3
; (4)

with only real current densities (~J). In Eq. (4), ~r and ~r0

describe the field and source points and ds0 is the source vol-
ume element. Bierman13 provided the relevant mathematical
proof that only ~J is needed. He showed that if one takes the
curl of the Biot-Savart law and assumes there are no induced
electric fields then the resulting expression is, in fact, the dif-
ferential form of Ampere’s law. Thus, they are formally
equivalent under those conditions. This is a surprising result
and one worth emphasizing. It has been stated by many other
authors.6,14–19 While it is formally correct for Eq. (4) also to
include the displacement current density,19 Bartlett15 and
Purcell6 both clearly explain why its contributions integrate
to zero. Thus, while the displacement current density facili-
tates the calculation of the magnetic field for some choices
of Amperian loops/surfaces when using Eq. (1), it is the real
currents that are producing the field.

Solutions to Maxwell’s equations for situations with
slowly varying charge and current densities have also been
studied by other authors. For example, Wolsky20 studied an
approximation (valid for light travel times much less than

the source variation timescale) and also found that the Biot-
Savart law (using only ~J) gives the correct magnetic field.
Additionally, Griffiths and Heald21 use the Jefimenko equa-
tions22 (the causally correct expressions for ~E and ~B which
express the fields entirely in terms of charge and current
densities and their time derivatives) to illustrate that the
Biot-Savart Law and Coulomb’s law are both correct in
some time-varying situations. They state that this “should be
regarded as a curiosity” but knowing that the displacement
current does not contribute here provides us with a unique
opportunity to better understand the magnetic field structure
due to a charging capacitor. Other authors have previously
used the equivalence of Ampere’s law and the Biot-Savart
law to examine some aspects of charging and/or discharging
capacitors.14,15

III. ADDITIONAL CALCULATION DETAILS

We will numerically integrate Eq. (4) to determine the
magnetic field due to the surface currents on the capacitor
plates and add it to the magnetic field due to the charging
wire and show that we can reproduce the magnetic fields in
the standard textbook solutions (Eqs. (2) and (3)). We will
make the standard assumption that the charge is instantly dis-
tributed over the plates (which is perfectly reasonable given
the rapid relaxation time in conductors) and we will also
assume that the plates are always uniformly charged. Since
we will be comparing our results to Eqs. (2) and (3) which
assume uniformly charged plates, we will ignore edge effects
at/near q ¼ a. By applying conservation of charge, it can be
shown that the surface current density on the two plates is4

~K ¼ I

2pq
1� q2

a2

� �
ð6q̂Þ; (5)

where the 6 in 6q̂ distinguishes the left (þ) and right (-)
plates.

Figure 1 illustrates the geometry but we have a few addi-
tional comments. There is a vacuum between the plates, and
so ~D ¼ �0

~E. We will use a constant current in the charging
wire. Otherwise, the standard textbook solutions for the elec-
tric and magnetic fields don’t satisfy Faraday’s law.23,24

Specifically, we set I¼ 0.01 A. Finally, since a particular
current element can always be paired with a current element
halfway around the plate which has its current in the exact
opposite direction, the magnetic fields due to the upper/lower
halves (at least) partially cancel each other. Thus, it will be
useful to discuss those magnetic fields separately so we will
label these four half-plates I–IV.

IV. DETERMINING THE MAGNETIC FIELD FOR

POINTS OUTSIDE THE CAPACITOR

So how are the magnetic fields at points P and Q both
equal to the magnetic field due to an infinite straight current
(see Eq. (2)), when the current is not infinite since it is miss-
ing the current element of length d between the capacitor
plates? In this quasi-static situation, the real currents must
collectively produce that magnetic field. This means that the
net magnetic field created by the surface currents on the
plates must be EXACTLY the same as the magnetic field
which would have been produced by that missing current
element! Note that we can also reach the same conclusion by
considering a discharging capacitor.25
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To illustrate how this is possible, let’s consider the mag-
netic field due to each of the four half-plates (see Fig. 1).
Figure 2 shows a face-on view of half-plate I as viewed from
point P. Since these surface currents are radial, Eq. (4) tells
us that they produce magnetic fields in 6ẑ and/or in 6/̂.
Using Eq. (4) (or a “right hand rule”), we find that all the sur-
face current elements produce magnetic fields in �/̂ at point
P (or inward for points above the charging wire in Fig. 1).
The surface current elements on the left side also produce
fields in �ẑ while those on the right side produce fields in
þẑ and given the symmety those contributions cancel. Thus,
the net magnetic field due to those surface currents is in �/̂.
Similarly, the surface currents on half-plate IV also produce
a field in �/̂ while those on half-plates II and III produce
fields in þ/̂. Since half-plate III is the closest to P, it is con-
ceivable that the vector sum of these fields is in þ/̂ just like
that due to the missing current element.

When we consider finite plates, we must account for the
fringing electric field. French and Tessman14 have previously
explained this for point R in Fig. 1 if q > a. We will con-
tinue their analysis as it applies to points P and Q. Imagine
applying Eq. (1) to a circular Amperian loop which contains
point P and using surface S1. Then perform a similar calcula-
tion with an analogous loop and surface for point Q instead.
We find that the magnetic fields at P and Q are different
from each other and both are smaller than the infinite straight
current field. The electric field is no longer zero so electric
field lines pass through S1 and terminate on the negative
charges on the right capacitor plate. Since that electric field
is increasing with time as the plates charge, this is equivalent
to a displacement current which is opposite the real current,
and so the resulting magnetic field calculated using Eq. (1) is
smaller. Since we expect the electric field (and the corre-
sponding displacement current) to be smaller at point Q than
at point P, the magnetic field will be closer to the infinite
straight current value at point Q and will approach it exactly
as z!1.

In the following calculations, we explicitly calculate the
net magnetic field due to the surface currents (via numerical
integration of Eq. (4) and using Eq. (5)) and compare it to
the magnetic field due to the missing current element across
the plates. That latter field can be determined analytically
using Eq. (4) and the result is

~Bmissing current element

¼ l0I

4pq
zþ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ðzþ dÞ2
q � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ z2
p

0
@

1
Að/̂Þ: (6)

If point P is very close to the plates and far from their edges,
then we expect the net magnetic field due to the surface

currents on the plates to match Eq. (6). However, if point P
is at too large a z and/or too close to the plate edge, then the
total magnetic field is smaller than that given by Eq. (2), and
so the net magnetic field from the surface currents on the
plates must be smaller than that given by Eq. (6).

Let’s now examine Fig. 3. We have plotted the magnetic
field due to the surface currents on the plates divided by
Eq. (6) along Path 1 in Fig. 1. Let’s focus on curve A (see
Table I for each model’s parameters). For this model,
a¼ 50 cm and q¼ 1 cm so at small z we expect the field ratio
to be very close to 1.0 and it is for z � 2 cm.26 However, at
z¼ 10 cm, z=a ¼ 0:2, and so the fringing electric field plays
a role and the magnetic field due to the surface currents must
be smaller than that given by Eq. (6). As Fig. 3 indicates, it
is 	1% smaller.

For the other four curves in Fig. 3, point P is at a location
where the fringing electric field plays a larger role. In Model
B, the capacitor plates are now 5 cm apart so while the mag-
netic field ratio still starts very close to 1.0, it drops more
rapidly than for Model A. In Model C, q¼ 10 cm so q=a
¼ 0:2 and there is a noticeable difference even at small z. In
Models D and E, the plate radii are now 25 and 10 cm,
respectively, and so the ratio changes significantly more rap-
idly with z. In fact, this allows the curves for Models D and

Fig. 3. This plots the magnetic field due to the surface currents on the plates

(calculated using Eqs. (4) and (5)) divided by the magnetic field which

would have been created by the missing current element across the plates

(see Eq. (6)) along Path 1 in Fig. 1. In the limit of infinitely large plates, all

five curves here would match the dotted line at 1.0. The model differences

can be seen in Table I. All models use I¼ 0.01 A.

Table I. Model parameters.

Model # Path

Plate radius

a (cm)

Plate separation

d (cm)

Path radius

q (cm)

A 1 50 1 1

B 1 50 5 1

C 1 50 1 10

D 1 25 1 1

E 1 10 1 1

F 2 25 0.25 -

G 2 25 0.5 -

H 2 25 1.0 -

I 2 12.5 1.0 -

Fig. 2. This is a face-on view of half-plate I as viewed from point P in Fig. 1.

It qualitatively illustrates that the surface current density is smaller at larger

radii as is described by Eq. (5).
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E to cross the curve for Model C. At z¼ 10 cm, the field ratio
for Model E has dropped to 	0:62. At this location, z=a
¼ 1:0, and so the plates begin to look more like an electric
dipole and less like infinite parallel plates. Conversely, at
z¼ 10 cm for Model C the plates still look quite large (but
just not infinitely large).

Note that as long as we are in the quasi-static limit, the
results in Fig. 3 do not depend upon the current’s magnitude.
When the ratio is less than one, it reflects the displacement
current passing through S1. If we were to increase the current
by a factor of ten, we would simultaneously increase the dis-
placement current by the same factor since j~JDj / dr=dt / I
(where r is the surface charge density on the plates), and so
the ratio wouldn’t change.

Let’s now examine the magnetic fields from each half-
plate and compare them with the magnetic field due to the
near-infinite current. In Fig. 4, we plot the magnetic field due
to the surface currents on each half-plate for Model A (solid
lines), the net field due to those surface currents (short
dashed line, Bplates), the field due to the near-infinite current
(dotted line, Bnear�infinitecurrent) which is the difference
between Eqs. (2) and (6) and the net field due to all the real
currents (long dashed line, Bnet) which is the sum of Bplates

and Bnear�infinitecurrent. The magnetic field is positive if its
direction at point P is in þ/̂ (or outward in Fig. 1). In these
calculations, l0=2p has been removed so 1.0 is equivalent to
2� 10�7 T.

Figure 4 has many interesting features. Although q¼ 1 cm
(so q=a ¼ 0:02), the upper half-plates I & III create signifi-
cantly larger fields than the lower ones since the cross prod-
uct in Eq. (4) biases surface current elements which are both
exactly halfway across Fig. 2 and which have the same
radius as point P. That cross product also helps explain why
the field due to the surface currents on half-plate IV increases
in magnitude with z until z ’ 1:2 cm. At small z, the surface
current density ~K and the vector from the source point to the

field point are nearly parallel so those current elements con-
tribute very little to the field. We also see that for points very
close to the plates, Bplates ’ 1

3
Bnet.

27 Conversely, for z � 2 cm
the surface current magnetic fields become negligible and the
near-infinite current dominates.

While it isn’t plotted here, the standard textbook solution
(Eq. (2)) would be equal to 1.0 on this graph so this illus-
trates that Bnet matches that solution nearly perfectly. This is
to be expected since the plates appear very much like two
infinite parallel plates in this geometry. For example, at
z 	 3 cm the surface currents on the plates contribute 	1%
of the total magnetic field (see Fig. 4) and their field is
	0:033% smaller than would have been produced by the
missing current element between the plates (see Fig. 3).
Thus, overall the magnetic field is within 0:01� 0:00033
	 0:00033% of that predicted by Eq. (2).

V. DETERMINING THE MAGNETIC FIELD FOR

POINTS “BETWEEN” THE CAPACITOR PLATES

To complete this study, we need to better understand the
magnitude of the magnetic field between the capacitor plates
so let’s consider how the real currents create this field. We
will locate Path 2 (see Fig. 1) along a line equidistant from

each plate so that ~BI ¼ ~BIII. We will group them together as
~Btop. Similarly, ~BII ¼ ~BIV so we will group them together as
~Bbottom. The magnetic field due to the charging wire can be
determined analytically using Eq. (4) and the result28 is

~Bwire ¼
l0I

2pq
1� dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4q2 þ d2
p

" #
ð/̂Þ: (7)

Along Path 2, ~Bwire and ~Bbottom are in þ/̂ while ~Btop is in

�/̂. At q¼ 0, ~Btop and ~Bbottom perfectly cancel each other

and ~Bwire is identically zero. As we increase q, ~Btop and
~Bbottom no longer perfectly cancel and ~Bwire starts to contrib-
ute. However, there is still significant cancellation so the
resulting field is quite small. For q� d, the second term in
Eq. (7) vanishes since the missing current element becomes

negligible so ~Bwire is just that of an infinite straight current.
Additionally, if q > a we expect the contributions of the sur-
face currents on the plates to vanish since those currents will
be too far away.

As in Sec. IV, we must account for having finite plates.
The use of Eq. (1) to obtain Eq. (3) required a uniform elec-
tric field perfectly parallel to the symmetry axis and
completely confined to the region between the plates. For
finite plates, that calculation overestimates the displacement
current flux (and hence the magnetic field) at all q.29

Equation (3) will be most accurate for q� a since the elec-
tric field is very uniform there and least accurate at q ¼ a
since the percentage overestimate will be largest there.

In Fig. 5, we display our results. We plot the magnetic
field due to all the real currents divided by Eq. (3). As we
just explained, for finite plates this ratio must be< 1.0. For
each model (again, see Table I), there is a dip at the plate
radius for that model and the ratios depart more from 1.0
when d/a is largest as is expected. For the “worst” case here
(Model I with a=d ¼ 12:5), the textbook solution overesti-
mates the field by 	11% at q ¼ a.

Fig. 4. The solid lines here (blue online) are the magnetic fields due to the

surface currents on each half-plate along Path 1 for Model A (see Table I).

The short dashed line labeled Bplates (red online) is the net magnetic field

due to the surface currents on those four half-plates. The dotted line labeled

Bnear�infinitecurrent (magenta online) is the magnetic field due to the near-

infinite current and the long dashed line labeled Bnet (cyan online) is the net

magnetic field due to all the real currents (in other words, the sum of Bplates

and Bnear�infinitecurrent). The magnetic field is positive if its direction at point

P is in þ/̂ (or outward in Fig. 1). In these calculations, l0=2p has been

removed so 1.0 is equivalent to 2� 10�7 T.
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We can actually use the q� a behavior in Fig. 5 to verify
the accuracy of our numerical integrations. Our results must
match those from Eq. (1) so let’s apply Eq. (1) to a circular
Amperian loop which contains point R and use a circular
area analogous to S1. For q� a, the field point is approxi-
mately on the axis of two uniformly charged disks, and so
the electric field must be very close to that on-axis electric
field. A straightforward integration of Coulomb’s law30 on
the axis tells us that

j~EðtÞj ¼ rðtÞ
�0

1� 1þ 4a2

d2

� ��1=2
" #

; (8)

where the pre-factor, rðtÞ=�0, is the resulting electric field
for infinite plates. For the four models shown in Fig. 5, a=d
¼ 100; 50; 25; and 12:5 and the corresponding factors in
brackets in Eq. (8) are 0.995, 0.99, 0.98 and 0.96 respectively
(to many digit accuracy). These are also easily obtained using

j~EðtÞj ¼ ðrðtÞ=�0Þ ½1� d=ð2aÞ þ Oðd=aÞ3 � � �
 which is the
Taylor expansion of Eq. (8) valid for a� d. Since the dis-
placement current densities must be reduced by the same fac-
tors, Eq. (1) tells us that the magnetic fields are similarly
reduced. In Fig. 5, the four models have exactly the correct
ratios at small q. Summarizing, our calculations and an ana-
lytic electric field approximation both tell us that departures
from the standard textbook solution for q� a are linearly
proportional to d/a when a=d � 1. In fact, Bartlett15 obtained
the same result using an analytic approximation to Eq. (4).

As q! 50 cm in Fig. 5, the magnetic field is again
approaching the infinite straight current field. Assuming that
the charging wire is the only source of magnetic field, Eq. (7)
predicts that the ratios for the four models (F-I) would be
0.9975, 0.995, 0.99 and 0.99 respectively (to many digits) at
q¼ 50 cm. This definitely matches Fig. 5 and verifies what we
said earlier that for these locations above/below the capacitor
the effects of the surface currents are negligible and the net
magnetic field is just that of the near-infinite straight current.

Let’s now see how the fields created by the upper and
lower halves of the plates help create the net magnetic field.
In Fig. 6, we plot ~Btop, ~Bbottom and ~Bwire for Model G along
Path 2. The figure also displays ~Bnet so the approximately
linear increase within the capacitor and the approximately

q�1 decrease above/below the capacitor are visible.31 On this

scale, ~Bnet is essentially identical to ~Bwire for q � a. ~Bbottom is
clearly negligible except at very small radii so for much of
the interior region of the capacitor (q � a), the magnetic field

is determined by the vector sum of ~Bwire and ~Btop. At small

radii, these fields are much larger than ~Bnet so accurate
numerical integration of Eq. (4) is required. For example, at

q ¼ 0:5 cm, j~Bwirej and j~Btopj are 	1400 and 	1600 times

larger respectively than j~Bnetj.
The curve representing ~Btop in Fig. 6 appears to have a

“kink” but this is an artifact of the linear plot. j~Btopj drops
very rapidly toward zero as q! a since the surface current
density (see Eq. (5)) drops rapidly toward zero in that region.

VI. CONCLUSION AND COMMENTS ABOUT

EDUCATION

In this work, we have utilized the equivalence of the Biot-
Savart Law and Ampere’s Law in quasi-static situations to
better understand the magnetic field structure due to a slowly
charging capacitor. For points to the left or right of the capaci-
tor (e.g., point P in Fig. 1) the surface currents replicate the
magnetic field that would have been created by the missing
current element across the plates as long as we have infinitely
large plates. For points between the capacitor plates (e.g.,
point R in Fig. 1 for q < a), the field is primarily determined
by the magnetic field due to the charging wire and that due to
the surface currents on the half-plates on the same side of the
charging wire as R. When the plates are finite in size, our
results tell us about the effects of the fringing electric field.

The fact that the magnetic field can be determined using
only the real currents is mostly absent from the most com-
monly used textbooks. In 1998, Roche32 wrote that “It is
rather more surprising that the conclusions of French,
Tessman, Purcell and Bartlett seem to have had very little
impact on the textbook tradition.” Unfortunately, this is still
true today. Many students obtain the impression (even if this

Fig. 6. This plots the (net) magnetic field due to the surface currents on half-

plates I and III (labeled Btop, blue online), that due to the surface currents on

half-plates II and IV (labeled Bbottom, red online) and that due to the current

in the charging wire (labeled Bwire, magenta online) along Path 2 for Model

G. It also plots the net magnetic field (dashed line labeled Bnet, cyan online)

due to all these sources. For q � 25 cm, Bnet and Bwire are essentially identi-

cal. The magnetic field is positive if its direction at point P is in þ/̂ (or out-

ward in Fig. 1). It is normalized such that 1.0 is equivalent to 2� 10�7 T.

Fig. 5. This plots the net magnetic field due to all currents divided by the

standard textbook solution given in Eq. (3) along Path 2. For infinitely large

plates, all the ratios would match the dotted line at 1.0. The model differ-

ences can be seen in Table I. All models use I¼ 0.01 A.
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misrepresents the text) that the real current generates the mag-
netic field to the left or right of the capacitor while the dis-
placement current generates it between the plates. This is
certainly undesirable. This point does appear in a slightly mod-
ified form in a homework problem in Griffiths’ text5 and it is
nicely explained in Purcell’s text.6 In 2013, a new edition of
Purcell’s text appeared (in conjunction with David Morin)33 so
hopefully this issue will become more widely acknowledged.

It would also be useful and educational to bring some of the
rich physics here into the classroom (particularly in upper divi-
sion classes). Imagine asking your students “Is the magnetic
field at point Q (in Fig. 1) any different from the magnetic field
at point P? Why or why not?” Or asking them “Why does
Ampere’s Law suggest that the magnetic fields at points P and
Q are both identical to the magnetic field due to an infinite
straight current when our current actually has a gap in it where
the capacitor is?” These questions would naturally lead to dis-
cussions of the lack of translational invariance, the impact of
the surface currents on the capacitor plates, the impact of fring-
ing electric fields when comparing finite and infinite plates,
etc. Overall, a discussion of these details would result in a bet-
ter understanding of the interesting physics in this system.
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